
Applications of sequence models

One-hot vectors

- A vector with all zeros except for the active dimension
- Example: 12 words in a sequence → 12 One-hot vectors
- After the one-hot vectors apply an embedding
 - Word2Vec, GloVE

<u>Vocabulary</u>	One-hot vectors							
I	I	1	Ι	0	Ι	0	Ι	0
am	am	0	am	1	am	0	am	0
Bond	Bond	0	Bond	0	Bond	1	Bond	0
James	James	0	James	0	James	0	James	1
tired	tired	0	tired	0	tired	0	tired	0
,	1	0	,	0	1	0	1	0
McGuire	McGuire	0	McGuire	0	McGuire	0	McGuire	0
!	!	0	!	0	!	0	!	0

Why not indices instead of one-hot vectors?

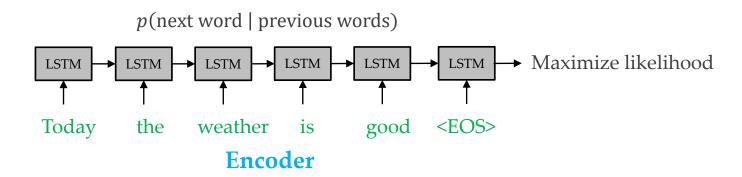
OR?

- Indices as representations introduce an artificial bias
- Some words suddenly become 'closer' because of artificial ordering

One-hot representation Index representation

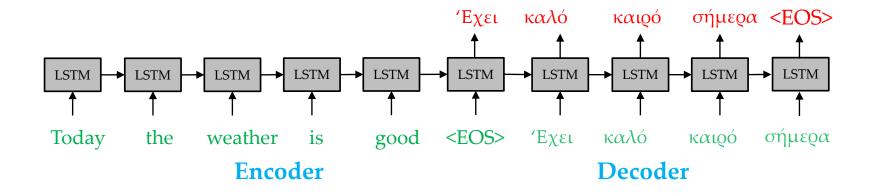
$$\ell_2(x_{am},x_{McQuire}) = \sqrt{2}$$

$$\ell_2(x_I, x_{am}) = \sqrt{2}$$

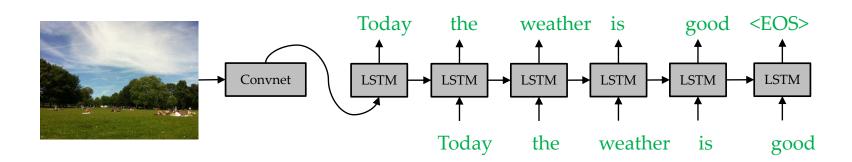

I am James
$$X'''I'' = 1$$
 $X'''am'' = 2$
 $X'''James'' = 4$
 $X'''McGuire'' = 7$

$$\ell_2(x_{am}, x_{McQuire}) = (7-2)^2 = 5$$

$$\ell_2(x_I, x_{am}) = (2-1)^2 = 1$$


Text generation

- Decompose the text sequence
- o Given starting word, sample a new word at a time


Encoder-Decoder architecture: Machine translation

- The source phrase a sequence encoded by an LSTM
 - "Today the weather is good"
- The phrase in the target language is a sequence decoded by another LSTM
 - "Έχει καλό καιρό σήμερα"

Encoder-Decoder architecture: Image captioning

- Similar to image translation
- The only difference is that the Encoder LSTM is an image ConvNet
 VGG, ResNet, ...
- Keep decoder the same

Image captioning demo

Click

NeuralTalk and Walk, recognition, text description of the image while walking

Summary

- o Inductive bias: what makes sequences special?
- Backpropagation through time
- LSTMs and variants
- Attention, Transformers
- Applications of sequence models